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Abstract 

Finite regions of attraction of the equilibrium are 

obtained for the problem of Lur'e when the Popov sector 

condition is satisfied only over a finite or semi-infinite 

interval. Given this interval, regions of attraction may be 

specified with or without other knowledge of the nature of 

the nonlinearity. This specification is performed using 

Liapunov functions constructed by the Kalman procedure and 

therefore is completely automatic. 



Introduction 

The work of Popov (Aizerman and Gantmacher, 1964), con- 

cerning control systems involving a single nonlinearity, pro- 

vides sufficient conditions for global asymptotic stability 

of the equilibrium when the nonlinearity $ ( a )  satisfies 

a sector condition of the form 0 $ ( a ) / a  < K for all a # 0 . 
In many real problems, however, $ ( a )  is known to violate 

this condition for 101 sufficiently large, and in most 

real problems $ ( o )  is not accurately known for large values 

of 101 . 
The present work is concerned with the problem of deter- 

mining a finite region of attraction of the equilibrium of the 

system 

when $(a) is a continuous nonlinear function which may leave 

the sector 
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at some D < R < 0 and/or some IS 2 5 > 0 but is known to 

be contained in this sector for all 

a region' exists if the Popov frequency condition 

- 1  
IS&( R l , R 2 )  Clearly such 

1 Re(1 9 iwq)G(iw) + > 0 2 0 

is satisfied for some real number q where 

( 3 )  

and A is strictly Hurwitz. 

Two types of regions of attraction may be envisaged: 

a) a region specifically tailored to the particular $ ( a )  

under consideration, and b) a region which is valid for - all 

nonlinearities satisfying the sector condition for 5&(R1,R2) . 
Both types of regions will be determined in the following. 

Formulation of the Problem 

It will be assumed that i) all r o o t s  of IA-zII = 0 have 

negative real parts, ii) the pair ( A , E )  is completely con- 

trollable, iii) the pair (c',A) - is completely observable, 

iv) the Popov condition (3) is satisfied for some q such that 

I q A  + 11 # 0 . As stated or implied by several sources 

(Aizerman and Gantmacher, 1964; Kalman, 1963), these conditions 

imply the existence of a function V ( & )  of the form 

'The numbers R 2  and -R1 are not both infinite. 
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having the derivative according to (1) 

where B is a positive definite' real symmetric matrix 

satisfying 

A'B + BA = - UU' 
._ ( 7 )  

and - u is a real vector which may be specified (Kalman, 1963) 

by writing the left side of (3) in the form 

1 e(iw)e(-iw) Re(l+iwq)G(iw) + - = 
IiwI-Al I-iwI-AI 

and setting 

where 0 is a real polynomial of degree n with leading 

coefficient . Further, the complete observability Qf 

(c',A) implies (Kalman, 1963) that is not identically zero 

'See Appendix A 
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on [t, ,t2](t2 > t l )  

vided  a€(R1, f i2) , I n  a d d i t i o n  

f o r  any n o n t r i v i a l  s o l u t i o n  o f  (1) pro-  
2 

v 9 0  

and 

vxv # 0 - 

Regions o f  A t t r a c t i o n  

De te rmina t ion  of  a r e g i o n  o f  a t t r a c t i o n  of  t h e  o r i g i n  

p roceeds  as f o l l o w s :  Def ine  

( i = 1 , 2 )  

and n o t e  t h a t  t h i s  minimum takes p l a c e  a t  a p o i n t  x a t  
-0 

which c l &  = R i  and VxV(&)  i s  o r t h o g o n a l  t o  t h e  hype rp lane  

c ' x  = 
- 

; i . e . ,  x = !2iB-1c/ctB-1~ - . T h e r e f o r e  'i -0 - -  

and a connected open r e g i o n  D ( O E D )  i s  c o n t a i n e d  i n  t h e  r e g i o n  o f  

'See Appendix B 
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attraction of the origin if X E D  implies 

c ' x  I- - 
i x'Bx + q +(S)dS < min M 

i 0  i=1,2 - -  

where the given + ( o )  satisfies (2) for all o&(R1,R2) . 
, 

N 

Alternatively a connected open region D ( O & D )  in the 

region of attraction of the origin, which is valid for all - 
+ ( a )  satisfying (2) for o&(Rl,R2) , may be specified by 
defining 

r v I v  

The region D ( D g D )  is then determined by 

and by 

# - X ' B X  < M2 for q 0 , 

If it is known that + ( a )  is an odd funciton, then a larger 

connected open region 
W 5 N  2 5  
D ( D  'G D S D )  may be found as 
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and 

K 2 -  - X'BX + 4 T(C 'X)  T < M2 for q < 0.. - 

N s 
Clearly any trajectory originating in D, D, or D remains 

within D for all t - > 0 , approaching the origin as t-t- . 
A trajectory originating in %(E) , however, does not neces- 
sarily remain within D(D) although it cannot leave D . n 0 F . s  

Illustrative Example 

A simple demonstration of the preceding method of con- 

s t  ruc t ing regions of attract ion is 

.. 
x + a? + bx t 4(x) = 0 

provided 

(a > 0, b > 0) 

Defining x1 = x , x2 = ? , as state variables, 

the system 

1 
(b-w t iwa 2 G(iw) = 

and ( 3 )  is seen to be satisfied for infinite K provided 

Equation (8) then yields q = a *  

e(iw) = K 
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a and, since y = -qc'b- + 1 / K  = 0 , ( 9 )  implies 

The symmetric matrix B is found by (7) to be 

B t L 2a ~ 2 ~ b  ~~ 

and therefore 

Consider firgt the class of all continuous odd non- 

linearities $(.(T) satisfying 

o < -  5 v o E ( R 1 , J 1 2 )  , 5 # 0 (28) 

for given R1, R 2  , where 
tion of the origin, vilid for all such $ ( o )  , is given by 
the open connected redion D(0~5) all of whose interior points 

- x satisfy 

R1 < 0 < R 2  . A region of attrac- 

% 

(29) 2 (axl + x2)2 + bx: < b min lRil 
i=1,2 
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It may be noted that the preceding choice of K, q ,  does 
N 

not yieLd a nontrivial region D which would be valid for 

non-odd nonlinearities. However a finite choice for K , and 
a correspondingly different matrix B, would provide such a 

region. 

Consider now a specific nonlinearity, say 

x 
for which - E  = R = 1 . Then a region of attraction D ( D 3  D) 

is determined by 
1 2 

(axl t x2)2 t (b + 1 - x,/2)x? 2 < b + 1/2 

Conclusions 

The primary difficulty involved in determining these 

regions of attraction is seen to be in finding the polynomial 

8 . This requires finding the roots of an even polynomial with 

real coefficients of order 

however, is a problem which is subject to machine computation. 

- < 2n , if (1) is of nth order. This, 

Since the matrix B may then be determined by ( 7 ) ,  relations 

(14>-(21) allow direct solution of the following problems: 

1.) Given 2, b, A, K, and 4 ( i s )  for ac(R1,R2) , 
determine D . 

2.) Given c b, A., K, R and R 2  , determine D" and . 1' 
3.) Given - -  e, b, A, K, and MI or M2 , determine the N /J 

-' - 

permissable values of R1 and R 2  . 
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These are all significant practical problems since one 

seldom knows, in reality, how a nonlinearity actually behaves 

for large values of its argument, Although fairly tedious 

computations are involved in determining the regions described 

above, the method is straightforward and has the basic ad- 

vantage of providing non-trivial regions of attraction for a 

wide class of problems. 
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Appendix A 

Assume that assumptions (i) through (iv) hold and - u is 

defined as in (8) and (9). Then (8) becomes 

y + m++(iw)h - - + h'm(iw) - = (G-u'rn(i~~)(F-m~(iw)u) - c  - (32) 

A A where 2h e - qA'c - c , y = - qc'b + 1 / K  , and 
~ ( z )  = [zI - A]-lb - with m*(z) - as its conjugate transpose. 

After some algebraic manipulation and the use of ( 7 ) ,  (32) 

- - - 
A 

becomes 

Re m*(iw)(Bb - - - - u) = 0 w > o  - (33) 

and therefore 

Consequently ( 6 )  is correct by direct computation. 

To show that B > 0 note tha t  (7) implies B > 0 since - 
A is strictly Hurwitz, and consider a point z1 such that 
Bz1 = 0 . This implies, by ( 7 ) ,  that BeAtx E 0 and 

ufeAtx E 0 . Therefore by (34) h'eAtEl - E 0 , which implies 
that zl = 0 if (&',A) is completely observable. To show 

that (h',A) - is completely observable, note that by the der- 

inition of h - 

-1 

-1 c 
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and therefore assumptions (ii), (iii), and (iv) imply that 

h1[A-zI]-'b - - is irreducible, which in turn implies that (h1 ,A) 
is completely observable. Therefore B is positive definite. 

Appendix B 

The function V(&) defined in (5) is clearly positive if 

ac(a,,a2), x # 0 , and q 2 0 , since 3->O and +(u) is 

restricted by ( 2 )  in this region. However for q < 0 further 

investigation is required to verify (10). 

Assume q < 0 and note that by (3) the plot of G(iw) , 
U E [ O , ~ )  , does not intersect the real axis at, or to the left of, 
- 1 / K  . Therefore, by the Nyquist criterion the equilibrium 

of system (1) is globally asymptotically stable for any linear 

characteristic + ( a )  = ha such that hc[O,KI . A l s o ,  by ( 6 1 ,  

V is non-positive for any such linear characteristic. Con- 

sequently V(x) - must be non-negative and, in particular, 

which implies 

and (10) is correct as stated. 
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